Initial commit
This commit is contained in:
4
src/.clangd
Normal file
4
src/.clangd
Normal file
@@ -0,0 +1,4 @@
|
||||
CompileFlags:
|
||||
Add:
|
||||
- -I../libs
|
||||
- -ISDL2
|
||||
656
src/main.cpp
Normal file
656
src/main.cpp
Normal file
@@ -0,0 +1,656 @@
|
||||
#include <SDL2/SDL.h>
|
||||
#include <cstring>
|
||||
#include <sys/types.h>
|
||||
|
||||
#define BYTECODE_READER_IMPLEMENTATION
|
||||
#include "reader.hpp"
|
||||
|
||||
#include <cassert>
|
||||
#include <chrono>
|
||||
#include <csignal>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <fcntl.h>
|
||||
#include <thread>
|
||||
#include <unistd.h>
|
||||
|
||||
const int SCREEN_WIDTH = 64;
|
||||
const int SCREEN_HEIGHT = 32;
|
||||
const int SCALE = 5;
|
||||
static size_t RAM_SIZE = 0x1000;
|
||||
const int TARGET_CYCLES_PER_SECOND = 500;
|
||||
const int TARGET_MS_PER_CYCLE = 1000 / TARGET_CYCLES_PER_SECOND;
|
||||
const int TARGET_MS_PER_FRAME = 1000 / 60;
|
||||
const int BG_COLOR = 0x081820;
|
||||
const int FG_COLOR = 0x88c070;
|
||||
|
||||
void draw(SDL_Renderer *renderer, SDL_Texture *texture,
|
||||
bool framebuffer[SCREEN_HEIGHT][SCREEN_WIDTH]) {
|
||||
|
||||
printf("Drawing...\n");
|
||||
|
||||
uint32_t pixels[SCREEN_WIDTH * SCREEN_HEIGHT];
|
||||
for (int i = 0; i < SCREEN_HEIGHT; i++) {
|
||||
for (int j = 0; j < SCREEN_WIDTH; j++) {
|
||||
pixels[i * SCREEN_WIDTH + j] =
|
||||
framebuffer[i][j] ? FG_COLOR : BG_COLOR;
|
||||
}
|
||||
}
|
||||
|
||||
SDL_UpdateTexture(texture, nullptr, pixels,
|
||||
SCREEN_WIDTH * sizeof(uint32_t));
|
||||
SDL_RenderClear(renderer);
|
||||
SDL_RenderCopy(renderer, texture, nullptr, nullptr);
|
||||
SDL_RenderPresent(renderer);
|
||||
}
|
||||
|
||||
static uint8_t FONT[0x10][0x05] = {
|
||||
{0xF0, 0x90, 0x90, 0x90, 0xF0}, // 0
|
||||
{0x20, 0x60, 0x20, 0x20, 0x70}, // 1
|
||||
{0xF0, 0x10, 0xF0, 0x80, 0xF0}, // 2
|
||||
{0xF0, 0x10, 0xF0, 0x10, 0xF0}, // 3
|
||||
{0x90, 0x90, 0xF0, 0x10, 0x10}, // 4
|
||||
{0xF0, 0x80, 0xF0, 0x10, 0xF0}, // 5
|
||||
{0xF0, 0x80, 0xF0, 0x90, 0xF0}, // 6
|
||||
{0xF0, 0x10, 0x20, 0x40, 0x40}, // 7
|
||||
{0xF0, 0x90, 0xF0, 0x90, 0xF0}, // 8
|
||||
{0xF0, 0x90, 0xF0, 0x10, 0xF0}, // 9
|
||||
{0xF0, 0x90, 0xF0, 0x90, 0x90}, // A
|
||||
{0xE0, 0x90, 0xE0, 0x90, 0xE0}, // B
|
||||
{0xF0, 0x80, 0x80, 0x80, 0xF0}, // C
|
||||
{0xE0, 0x90, 0x90, 0x90, 0xE0}, // D
|
||||
{0xF0, 0x80, 0xF0, 0x80, 0xF0}, // E
|
||||
{0xF0, 0x80, 0xF0, 0x80, 0x80}, // F
|
||||
};
|
||||
|
||||
class Chip8 {
|
||||
public:
|
||||
Chip8(char *rom_path) {
|
||||
int rom_fd = open(rom_path, O_RDONLY);
|
||||
if (rom_fd < 0) {
|
||||
printf("Failed to open file: %s\n", rom_path);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
pc = 0x200;
|
||||
ram = (uint8_t *)malloc(RAM_SIZE);
|
||||
if (ram == NULL) {
|
||||
printf("Failed to allocate ram!");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
memcpy(ram, FONT, sizeof(FONT));
|
||||
|
||||
int file_size = lseek(rom_fd, 0, SEEK_END);
|
||||
(void)lseek(rom_fd, 0, SEEK_SET);
|
||||
|
||||
printf("Reading file: %s for %d bytes\n", rom_path, file_size);
|
||||
|
||||
int err = read(rom_fd, ram + 0x200, file_size);
|
||||
if (err < 0) {
|
||||
printf("Failed to read file: %s\n", rom_path);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (err != file_size) {
|
||||
printf("Failed to read file: %s\n", rom_path);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
close(rom_fd);
|
||||
|
||||
stack = (uint16_t *)malloc(sizeof(uint16_t) * 16);
|
||||
if (stack == NULL) {
|
||||
printf("Failed to allocate stack!");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
~Chip8() {
|
||||
free(ram);
|
||||
free(stack);
|
||||
}
|
||||
|
||||
int run();
|
||||
void view_ram();
|
||||
void dump_ram();
|
||||
|
||||
int is_protected(size_t addr) { return addr < 0x200; }
|
||||
|
||||
int read_mem(size_t addr) {
|
||||
if (is_protected(addr)) {
|
||||
printf("Attempted to read from protected address: 0x%04x\n",
|
||||
(unsigned int)addr);
|
||||
dump_ram();
|
||||
exit(1);
|
||||
}
|
||||
return this->ram[addr];
|
||||
}
|
||||
|
||||
void write_mem(size_t addr, uint8_t val) {
|
||||
if (is_protected(addr)) {
|
||||
printf("Attempted to write to protected address: 0x%04x\n",
|
||||
(unsigned int)addr);
|
||||
dump_ram();
|
||||
exit(1);
|
||||
}
|
||||
this->ram[addr] = val;
|
||||
}
|
||||
|
||||
void set_sound_timer(uint8_t val) {
|
||||
// enable buzzer
|
||||
this->sound_timer = val;
|
||||
}
|
||||
|
||||
void set_pixel(int x, int y, uint8_t val) {
|
||||
assert(x >= 0 && x < SCREEN_WIDTH);
|
||||
assert(y >= 0 && y < SCREEN_HEIGHT);
|
||||
this->fb[y][x] = val;
|
||||
}
|
||||
|
||||
uint8_t get_pixel(int x, int y) {
|
||||
assert(x >= 0 && x < SCREEN_WIDTH);
|
||||
assert(y >= 0 && y < SCREEN_HEIGHT);
|
||||
return this->fb[y][x];
|
||||
}
|
||||
|
||||
private:
|
||||
uint8_t *ram;
|
||||
bool fb[SCREEN_HEIGHT][SCREEN_WIDTH];
|
||||
uint16_t pc;
|
||||
uint16_t *stack;
|
||||
uint8_t sp;
|
||||
uint8_t v[16];
|
||||
uint16_t i;
|
||||
uint8_t delay;
|
||||
uint8_t sound_timer;
|
||||
bool compat;
|
||||
};
|
||||
|
||||
int Chip8::run() {
|
||||
using namespace std::chrono;
|
||||
|
||||
int exit = 0;
|
||||
constexpr auto cycle_time = milliseconds(TARGET_MS_PER_CYCLE);
|
||||
constexpr auto timer_interval = milliseconds(TARGET_MS_PER_FRAME);
|
||||
auto last_timer_update = high_resolution_clock::now();
|
||||
|
||||
if (SDL_Init(SDL_INIT_VIDEO) < 0) {
|
||||
printf("Failed to initialize SDL: %s\n", SDL_GetError());
|
||||
return 1;
|
||||
}
|
||||
|
||||
SDL_Window *window = SDL_CreateWindow(
|
||||
"CHIP-8 Emulator", SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED,
|
||||
SCREEN_WIDTH * SCALE, SCREEN_HEIGHT * SCALE, SDL_WINDOW_SHOWN);
|
||||
SDL_Renderer *renderer =
|
||||
SDL_CreateRenderer(window, -1, SDL_RENDERER_ACCELERATED);
|
||||
SDL_Texture *texture = SDL_CreateTexture(renderer, SDL_PIXELFORMAT_RGBA8888,
|
||||
SDL_TEXTUREACCESS_STREAMING,
|
||||
SCREEN_WIDTH, SCREEN_HEIGHT);
|
||||
|
||||
bool running = true;
|
||||
SDL_Event event;
|
||||
|
||||
while (running) {
|
||||
while (SDL_PollEvent(&event)) {
|
||||
if (event.type == SDL_QUIT) {
|
||||
running = false;
|
||||
}
|
||||
}
|
||||
|
||||
auto start_time = high_resolution_clock::now();
|
||||
|
||||
uint16_t op = (read_mem(pc) << 8) | read_mem(pc + 1);
|
||||
pc += 2;
|
||||
printf("PC: 0x%04x OP: 0x%04x\n", pc, op);
|
||||
Bytecode bytecode = parse(op);
|
||||
|
||||
printf("OPCODE: 0x%04x INSTRUCTION_TYPE: %d\n", op,
|
||||
bytecode.instruction_type);
|
||||
|
||||
switch (bytecode.instruction_type) {
|
||||
case EXIT: {
|
||||
// From Peter Miller's chip8run. Exit emulator with a return value
|
||||
// of N.
|
||||
exit = bytecode.operand.byte;
|
||||
running = false;
|
||||
break;
|
||||
}
|
||||
case SYS: {
|
||||
// Jump to a machine code routine at nnn.
|
||||
// This instruction is only used on the old computers on which
|
||||
// Chip-8 was originally implemented. It is ignored by modern
|
||||
// interpreters.
|
||||
uint16_t addr = bytecode.operand.word & 0x0FFF;
|
||||
assert(addr < RAM_SIZE && addr % 0x2 == 0);
|
||||
|
||||
pc = bytecode.operand.word & 0x0FFF;
|
||||
break;
|
||||
}
|
||||
case CLS: {
|
||||
// Clear the screen.
|
||||
// fprintf(stderr, "CLS not implemented\n");
|
||||
memset(this->fb, 0, SCREEN_WIDTH * SCREEN_HEIGHT);
|
||||
break;
|
||||
}
|
||||
case RET: {
|
||||
// Return from a subroutine.
|
||||
// The interpreter sets the program counter to the address at the
|
||||
// top of the stack, then subtracts 1 from the stack pointer.
|
||||
|
||||
pc = stack[--sp];
|
||||
break;
|
||||
}
|
||||
case JP: {
|
||||
// Jump to location nnn.
|
||||
// The interpreter sets the program counter to nnn.
|
||||
|
||||
uint16_t addr = bytecode.operand.word & 0x0FFF;
|
||||
assert(addr < RAM_SIZE && addr % 0x2 == 0);
|
||||
|
||||
pc = bytecode.operand.word & 0x0FFF;
|
||||
break;
|
||||
}
|
||||
case CALL: {
|
||||
// Call subroutine at nnn.
|
||||
// The interpreter increments the stack pointer, then puts the
|
||||
// current PC on the top of the stack. The PC is then set to nnn.
|
||||
|
||||
stack[++sp] = pc;
|
||||
pc = bytecode.operand.word & 0x0FFF;
|
||||
break;
|
||||
}
|
||||
case SKIP_INSTRUCTION_BYTE: {
|
||||
// Skip next instruction if Vx = kk.
|
||||
// The interpreter compares register Vx to kk, and if they are
|
||||
// equal, increments the program counter by 2.
|
||||
if (this->v[bytecode.operand.byte_reg.reg] ==
|
||||
bytecode.operand.byte_reg.byte) {
|
||||
pc += 2;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case SKIP_INSTRUCTION_NE_BYTE: {
|
||||
// Skip next instruction if Vx != kk.
|
||||
// The interpreter compares register Vx to kk, and if they are not
|
||||
// equal, increments the program counter by 2.
|
||||
if (this->v[bytecode.operand.byte_reg.reg] !=
|
||||
bytecode.operand.byte_reg.byte) {
|
||||
pc += 2;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case SKIP_INSTRUCTION_REG: {
|
||||
// Skip next instruction if Vx = Vy.
|
||||
// The interpreter compares register Vx to register Vy, and if they
|
||||
// are equal, increments the program counter by 2.
|
||||
if (this->v[bytecode.operand.reg_reg.x] ==
|
||||
this->v[bytecode.operand.reg_reg.y]) {
|
||||
pc += 2;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case SKIP_INSTRUCTION_NE_REG: {
|
||||
// Skip next instruction if Vx != Vy.
|
||||
// The values of Vx and Vy are compared, and if they are not equal,
|
||||
// the program counter is increased by 2.
|
||||
if (this->v[bytecode.operand.reg_reg.x] !=
|
||||
this->v[bytecode.operand.reg_reg.y]) {
|
||||
pc += 2;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case LOAD_BYTE: {
|
||||
// Set Vx = kk.
|
||||
// The interpreter puts the value kk into register Vx.
|
||||
this->v[bytecode.operand.byte_reg.reg] =
|
||||
bytecode.operand.byte_reg.byte;
|
||||
break;
|
||||
}
|
||||
case ADD_BYTE: {
|
||||
// Set Vx = Vx + kk.
|
||||
// Adds the value kk to the value of register Vx, then stores the
|
||||
// result in Vx.
|
||||
this->v[bytecode.operand.byte_reg.reg] +=
|
||||
bytecode.operand.byte_reg.byte;
|
||||
break;
|
||||
}
|
||||
case LOAD_REG: {
|
||||
// Set Vx = Vy.
|
||||
// Stores the value of register Vy in register Vx.
|
||||
this->v[bytecode.operand.reg_reg.x] =
|
||||
this->v[bytecode.operand.reg_reg.y];
|
||||
break;
|
||||
}
|
||||
case ADD_REG: {
|
||||
// Set Vx = Vx + Vy, set VF = carry.
|
||||
// The values of Vx and Vy are added together. If the result is
|
||||
// greater than 8 bits (i.e., > 255,) VF is set to 1, otherwise 0.
|
||||
// Only the lowest 8 bits of the result are kept, and stored in Vx.
|
||||
int result = this->v[bytecode.operand.reg_reg.x] +
|
||||
this->v[bytecode.operand.reg_reg.y];
|
||||
this->v[bytecode.operand.reg_reg.x] = result & 0xFF;
|
||||
this->v[0xF] = result > 0xFF;
|
||||
|
||||
break;
|
||||
}
|
||||
case SUB_REG: {
|
||||
// Set Vx = Vx - Vy, set VF = NOT borrow.
|
||||
// If Vx > Vy, then VF is set to 1, otherwise 0. Then Vy is
|
||||
// subtracted from Vx, and the results stored in Vx.
|
||||
int result = this->v[bytecode.operand.reg_reg.x] -
|
||||
this->v[bytecode.operand.reg_reg.y];
|
||||
this->v[bytecode.operand.reg_reg.x] = result & 0xFF;
|
||||
this->v[0xF] = result < 0;
|
||||
break;
|
||||
}
|
||||
case OR_REG: {
|
||||
// Set Vx = Vx OR Vy.
|
||||
// Performs a bitwise OR on the values of Vx and Vy, then stores the
|
||||
// result in Vx. A bitwise OR compares the corrseponding bits from
|
||||
// two values, and if either bit is 1, then the same bit in the
|
||||
// result is also 1. Otherwise, it is 0.
|
||||
this->v[bytecode.operand.reg_reg.x] =
|
||||
this->v[bytecode.operand.reg_reg.x] |
|
||||
this->v[bytecode.operand.reg_reg.y];
|
||||
break;
|
||||
}
|
||||
case AND_REG: {
|
||||
// Set Vx = Vx AND Vy.
|
||||
// Performs a bitwise AND on the values of Vx and Vy, then stores
|
||||
// the result in Vx. A bitwise AND compares the corrseponding bits
|
||||
// from two values, and if both bits are 1, then the same bit in the
|
||||
// result is also 1. Otherwise, it is 0.
|
||||
this->v[bytecode.operand.reg_reg.x] =
|
||||
this->v[bytecode.operand.reg_reg.x] &
|
||||
this->v[bytecode.operand.reg_reg.y];
|
||||
break;
|
||||
}
|
||||
case XOR_REG: {
|
||||
// Set Vx = Vx XOR Vy.
|
||||
// Performs a bitwise exclusive OR on the values of Vx and Vy, then
|
||||
// stores the result in Vx. An exclusive OR compares the
|
||||
// corrseponding bits from two values, and if the bits are not both
|
||||
// the same, then the corresponding bit in the result is set to 1.
|
||||
// Otherwise, it is 0.
|
||||
this->v[bytecode.operand.reg_reg.x] =
|
||||
this->v[bytecode.operand.reg_reg.x] ^
|
||||
this->v[bytecode.operand.reg_reg.y];
|
||||
break;
|
||||
}
|
||||
case SHR_REG: {
|
||||
// Set Vx = Vx SHR 1.
|
||||
// If the least-significant bit of Vx is 1, then VF is set to 1,
|
||||
// otherwise 0. Then Vx is divided by 2.
|
||||
this->v[0xF] = this->v[bytecode.operand.reg_reg.x] & 1;
|
||||
this->v[bytecode.operand.reg_reg.x] =
|
||||
this->v[bytecode.operand.reg_reg.x] >> 1;
|
||||
break;
|
||||
}
|
||||
case SUBN_REG: {
|
||||
// Set Vx = Vy - Vx, set VF = NOT borrow.
|
||||
// If Vy > Vx, then VF is set to 1, otherwise 0. Then Vx is
|
||||
// subtracted from Vy, and the results stored in Vx.
|
||||
int result = this->v[bytecode.operand.reg_reg.y] -
|
||||
this->v[bytecode.operand.reg_reg.x];
|
||||
this->v[bytecode.operand.reg_reg.x] = result & 0xFF;
|
||||
this->v[0xF] = result < 0;
|
||||
break;
|
||||
}
|
||||
case SHL_REG: {
|
||||
// Set Vx = Vx SHL 1.
|
||||
// If the most-significant bit of Vx is 1, then VF is set to 1,
|
||||
// otherwise to 0. Then Vx is multiplied by 2.
|
||||
this->v[0xF] = this->v[bytecode.operand.reg_reg.x] >> 7;
|
||||
this->v[bytecode.operand.reg_reg.x] =
|
||||
this->v[bytecode.operand.reg_reg.x] << 1;
|
||||
break;
|
||||
}
|
||||
case LOAD_I_BYTE: {
|
||||
// Set I = nnn.
|
||||
// The value of register I is set to nnn.
|
||||
this->i = bytecode.operand.word & 0x0FFF;
|
||||
break;
|
||||
}
|
||||
case JP_V0_BYTE: {
|
||||
// Jump to location nnn + V0.
|
||||
// The program counter is set to nnn plus the value of V0.
|
||||
pc = (bytecode.operand.word & 0x0FFF) + this->v[0];
|
||||
break;
|
||||
}
|
||||
case RND: {
|
||||
// Set Vx = random byte AND kk.
|
||||
// The interpreter generates a random number from 0 to 255, which is
|
||||
// then ANDed with the value kk. The results are stored in Vx. See
|
||||
// instruction 8xy2 for more information on AND.
|
||||
this->v[bytecode.operand.byte_reg.reg] =
|
||||
static_cast<uint8_t>(rand()) & bytecode.operand.byte_reg.byte;
|
||||
break;
|
||||
}
|
||||
case DRW: {
|
||||
// Display n-byte sprite starting at memory location I
|
||||
// at (Vx, Vy), set VF = collision.
|
||||
// The interpreter reads n bytes from memory, starting at the
|
||||
// address stored in I. These bytes are then displayed as sprites on
|
||||
// screen at coordinates (Vx, Vy). Sprites are XORed onto the
|
||||
// existing screen. If this causes any pixels to be erased, VF is
|
||||
// set to 1, otherwise it is set to 0. If the sprite is positioned
|
||||
// so part of it is outside the coordinates of the display, it wraps
|
||||
// around to the opposite side of the screen. See instruction 8xy3
|
||||
// for more information on XOR, and section 2.4, Display, for more
|
||||
// information on the Chip-8 screen and sprites.
|
||||
// fprintf(stderr, "DRW not implemented\n");
|
||||
this->v[0x0F] = 0;
|
||||
|
||||
for (int i = 0; i < bytecode.operand.reg_reg_nibble.nibble; i++) {
|
||||
uint8_t sprite = read_mem(this->i + i);
|
||||
|
||||
for (int j = 0; j < 8; j++) {
|
||||
bool source = (sprite >> (7 - j)) & 0x1;
|
||||
int x = (this->v[bytecode.operand.reg_reg_nibble.x] + j) %
|
||||
SCREEN_WIDTH;
|
||||
int y = (this->v[bytecode.operand.reg_reg_nibble.y] + i) %
|
||||
SCREEN_HEIGHT;
|
||||
|
||||
printf("Sprite %d, bit %d %d\n", i, j,
|
||||
sprite & (0x80 >> j));
|
||||
if (!source) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (get_pixel(x, y)) {
|
||||
set_pixel(x, y, 0);
|
||||
this->v[0x0F] = 1;
|
||||
} else {
|
||||
set_pixel(x, y, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
case SKIP_PRESSED_REG: {
|
||||
// Skip next instruction if key with the value of Vx is
|
||||
// pressed.
|
||||
// Checks the keyboard, and if the key corresponding to the value of
|
||||
// Vx is currently in the down position, PC is increased by 2.
|
||||
fprintf(stderr, "SKIP_PRESSED_REG not implemented\n");
|
||||
break;
|
||||
}
|
||||
case SKIP_NOT_PRESSED_REG: {
|
||||
// Skip next instruction if key with the value of Vx is
|
||||
// not pressed.
|
||||
// Checks the keyboard, and if the key corresponding to the value of
|
||||
// Vx is currently in the up position, PC is increased by 2.
|
||||
fprintf(stderr, "SKIP_NOT_PRESSED_REG not implemented\n");
|
||||
break;
|
||||
}
|
||||
case LD_REG_DT: {
|
||||
// Set Vx = delay timer value.
|
||||
// The value of DT is placed into Vx.
|
||||
this->v[bytecode.operand.reg_reg.x] = this->delay;
|
||||
break;
|
||||
}
|
||||
case LD_REG_K: {
|
||||
// Wait for a key press, store the value of the key in
|
||||
// Vx.
|
||||
// All execution stops until a key is pressed, then the value of
|
||||
// that key is stored in Vx.
|
||||
fprintf(stderr, "LD_REG_K not implemented\n");
|
||||
break;
|
||||
}
|
||||
case LD_DT_REG: {
|
||||
// Set delay timer = Vx.
|
||||
// DT is set equal to the value of Vx.
|
||||
this->delay = this->v[bytecode.operand.reg_reg.x];
|
||||
break;
|
||||
}
|
||||
case LD_ST_REG: {
|
||||
// Set sound timer = Vx.
|
||||
// ST is set equal to the value of Vx.
|
||||
set_sound_timer(bytecode.operand.byte);
|
||||
break;
|
||||
}
|
||||
case ADD_I_REG: {
|
||||
// Set I = I + Vx.
|
||||
// The values of I and Vx are added, and the results are stored in
|
||||
// I.
|
||||
this->i += this->v[bytecode.operand.byte];
|
||||
break;
|
||||
}
|
||||
case LD_F_REG: {
|
||||
// Set I = location of sprite for digit Vx.
|
||||
// The value of I is set to the location for the hexadecimal sprite
|
||||
// corresponding to the value of Vx. See section 2.4, Display, for
|
||||
// more information on the Chip-8 hexadecimal font.
|
||||
|
||||
//? This is the ONLY spot where the emulator is allowed to access
|
||||
//? 0x0000-0x01FF of the RAM. Since that area of RAM is reserved for
|
||||
//? the emulator's own use.
|
||||
this->i = (uint16_t)(bytecode.operand.byte * 5);
|
||||
break;
|
||||
}
|
||||
case LD_B_REG: {
|
||||
// Store BCD representation of Vx in memory locations I,
|
||||
// I+1, and I+2.
|
||||
// The interpreter takes the decimal value of Vx, and places the
|
||||
// hundreds digit in memory at location in I, the tens digit at
|
||||
// location I+1, and the ones digit at location I+2.
|
||||
// TODO: is this correct?
|
||||
this->ram[this->i] =
|
||||
(uint8_t)((this->v[bytecode.operand.reg_reg.x] / 100) & 0x0F);
|
||||
this->ram[this->i + 1] =
|
||||
(uint8_t)((this->v[bytecode.operand.reg_reg.x] % 100) / 10) &
|
||||
0x0F;
|
||||
this->ram[this->i + 2] =
|
||||
(uint8_t)(this->v[bytecode.operand.reg_reg.x] % 10) & 0x0F;
|
||||
break;
|
||||
}
|
||||
case LD_PTR_I_REG: {
|
||||
// Store registers V0 through Vx in memory starting at
|
||||
// location I.
|
||||
// The interpreter copies the values of registers V0 through Vx into
|
||||
// memory, starting at the address in I.
|
||||
for (int i = 0; i < bytecode.operand.reg_reg.x; i++) {
|
||||
this->ram[this->i + i] = this->v[i];
|
||||
}
|
||||
break;
|
||||
}
|
||||
case LD_REG_PTR_I: {
|
||||
// Read registers V0 through Vx from memory starting at
|
||||
// location I.
|
||||
// The interpreter reads values from memory starting at location I
|
||||
// into registers V0 through Vx.
|
||||
for (int i = 0; i < bytecode.operand.reg_reg.x; i++) {
|
||||
this->v[i] = this->ram[this->i + i];
|
||||
}
|
||||
break;
|
||||
}
|
||||
case UNKNOWN_INSTRUCTION: {
|
||||
fprintf(stderr, "Unknown instruction type: %d\n",
|
||||
bytecode.instruction_type);
|
||||
exit = 1;
|
||||
running = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
printf("Emulating...\n");
|
||||
|
||||
auto now = high_resolution_clock::now();
|
||||
if (duration_cast<milliseconds>(now - last_timer_update) >=
|
||||
timer_interval) {
|
||||
printf("Updating...\n");
|
||||
if (delay > 0)
|
||||
--delay;
|
||||
if (sound_timer > 0)
|
||||
--sound_timer;
|
||||
draw(renderer, texture, this->fb);
|
||||
last_timer_update = now;
|
||||
}
|
||||
|
||||
auto elapsed_time = duration_cast<milliseconds>(
|
||||
high_resolution_clock::now() - start_time);
|
||||
if (elapsed_time < cycle_time) {
|
||||
std::this_thread::sleep_for(cycle_time - elapsed_time);
|
||||
}
|
||||
}
|
||||
|
||||
SDL_DestroyTexture(texture);
|
||||
SDL_DestroyRenderer(renderer);
|
||||
SDL_DestroyWindow(window);
|
||||
SDL_Quit();
|
||||
|
||||
return exit;
|
||||
}
|
||||
|
||||
void Chip8::view_ram() {
|
||||
printf("Hex dump:\n");
|
||||
for (size_t i = 0; i < RAM_SIZE / 16; i++) {
|
||||
size_t j = 0;
|
||||
for (; j < 16; j++) {
|
||||
printf("%02x ", this->ram[i * 16 + j]);
|
||||
}
|
||||
printf(" |");
|
||||
j = 0;
|
||||
for (; j < 16; j++) {
|
||||
if (this->ram[i * 16 + j] >= 32 && this->ram[i * 16 + j] <= 126) {
|
||||
printf("%c", this->ram[i * 16 + j]);
|
||||
} else {
|
||||
printf(".");
|
||||
}
|
||||
}
|
||||
printf("|\n");
|
||||
}
|
||||
}
|
||||
|
||||
void Chip8::dump_ram() {
|
||||
(void)remove("ram.bin");
|
||||
|
||||
FILE *fp = fopen("ram.bin", "wb");
|
||||
if (fp == NULL) {
|
||||
printf("Failed to open file\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
fwrite(this->ram, RAM_SIZE, 1, fp);
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
signal(SIGINT, exit);
|
||||
|
||||
if (argc < 2) {
|
||||
printf("Usage: %s <file>\n", argv[0]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
Chip8 chip8 = Chip8(argv[1]);
|
||||
chip8.view_ram();
|
||||
int ret = chip8.run();
|
||||
|
||||
return ret;
|
||||
}
|
||||
Reference in New Issue
Block a user